Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Direct pH measurement of porewater in compacted bentonite (III); Influence of low alkalinity cement on bentonite porewater

Isogai, Takeshi*; Oda, Chie

JNC TN8400 2000-025, 48 Pages, 2000/09

JNC-TN8400-2000-025.pdf:2.1MB

Porewater chemistly in compacted bentonite would affect a performance of engineered barrier system in a high-level radioactive waste repository, whereas there are little information of the porewater based on experimental data. The previous study provided a new method of direct pH measurement for highly compacted bentonite system and demonstrated some tests for compacted bentonite samples (the dry densities: 1.6 [g/cm$$^{3}$$] and 1.8 [g/cm$$^{3}$$]) both with the de-ionized water and with the NaCl solution. In this study, the solution equilibrated with low alkalinity cement were used in the direct pH measurement to see the effect of the composition of the external solutions, in which the bentonite column immersed. The result showed that the pH value of porewater in the cementitious condition was around 9 during the immersed time 1 to 3 months, while after 6 months became the porewater pH 10.6, which was equal to pH of the external solution.

JAEA Reports

Experimental study of pyrite oxidation in compacted sodium bentonite

JNC TN8400 2000-012, 33 Pages, 2000/04

JNC-TN8400-2000-012.pdf:1.04MB

The redox condition of near-field is expected to affect the performance of engineered barrier system. Especially, the oxygen initially existing in the pore space of compacted bentonites strongly affects the redox condition of the near-field. For assessing the influence of the oxygen, the transport parameters of it in the compacted bentonite and consumption process should be known. Therefore, following researches were conducted. In order to understand the diffusion of dissolved oxygen (DO) in compacted bentonite and to predict the effect of DO, the effective diffusion coefficients of DO in compacted sodium bentonite were measured by electrochemistry. As the results, the following relationship between the dry density of compacted sodium bentonite and the effective diffusion coefficient of DO in compacted sodium bentonite was derived: De=1.53$$pm$$0.13$$times$$10$$^{-9}$$exp(-2.15$$pm$$0.24$$times$$10$$^{-3}$$p) where De is the effective diffusion coefficient (m$$^{2}$$s$$^{-1}$$) of DO in compacted sodium bentonite and $$rho$$ is the dry density (kg m$$^{-3}$$) of compacted sodium bentonite. The oxygen concentration in the bentonite is expected to be controlled by oxidation of pyrite as impurity in the bentonite. In order to investigate the above idea, the rates of pyrite oxidation by DO in compacted sodium bentonite were estimated from the experimental data on pyrite-bentonite systems usig the obtained effective diffusion coefficient of DO. The results show that the averages of the rate constants of pyrite oxidation by DO in the bentonite for dry densities of 0.8, 0.9, 1.0, 1.1 and 1.2$$times$$10$$^{3}$$kgm$$^{3}$$ were 1.38$$pm$$0.32$$times$$10$$^{-8}$$, 1.10$$pm$$0.24$$times$$10$$^{-8}$$, 1.16$$pm$$0.35$$times$$10$$^{-8}$$, 9.36$$pm$$2.23$$times$$10$$^{-9}$$ and 7.48$$pm$$1.92$$times$$10$$^{-9}$$ms$$^{-1}$$, respectively. The relationship between the dry density ($$rho$$) and the rate constant (k') was expressed as follows: k'=3.94$$pm$$1.06$$times$$10$$^{-8}$$exp(-1.33$$pm$$0.28$$times$$10$$^{-3}$$$$rho$$) ...

JAEA Reports

Apparent diffusion coefficients of uranium, neptunium and technetium in compacted bentonite under reducing conditions

*; Nakazawa, Toshiyuki*; Ueta, Shinzo*; Shibata, Masahiro

JNC TN8400 99-069, 41 Pages, 1999/11

JNC-TN8400-99-069.pdf:1.62MB

As a part of the evaluation for the sorption phenomena of nuclides in compacted bentonite, apparent diffusivities for uranium, neptunium and technetium that are redox-sensitive elements, were measured under reducing conditions. Bentonite used was a sodium bentonite, Kunigel V1. Apparent diffusivities were measured by using in-diffusion method (concentration profile method), under the conditions with varying dry densities of compacted bentonite and sorts of the solution used for water saturation of bentonite in diffusion experiments. As a result of the measurements, following ranges of values for apparent diffusivities were acquired. ...

JAEA Reports

System evaluation for the volume change of the engineered barrier

Aoyagi, Takayoshi*; Mihara, Morihiro; Tanaka, M.*; Okutsu, Kazuo*

JNC TN8400 99-058, 55 Pages, 1999/11

JNC-TN8400-99-058.pdf:6.84MB

For the emplaced waste in TRU waste disposal facility, it may have the void for waste bodies it. And, generating void which accompanies those component elution in concrete pit and filler in which the cement material becomes the candidate material is assumed. It is considered that the security of the diffusion control in the bentonite is not done when these voids collapsed, and when it generated the volume change inside the buffer material (bentonite). The imperfect blockage of the void by not obtaining, the sufficient swelling pameability swelling bentonite is a cause on this. Then, volume change of the bentonite inside is analyzed in this study under the conservative estimation. And the following are tested: Self-sealing, maximum swelling rate, density distribution change of the batonite. Evaluation of the engineered barrier system for volume change from the result was carried out. Prior to the evaluation, generating void was calculated based on the conservative estimation. The density of the buffer material as it assumed the blocking by buffer material uniformly awelling using this calculated data, was obtained. By the permeability got from existing research result which shows the relationship between density and permeability of the bentonite, it was confirmed to become diffusion control in the buffer material inside, in existing engineered barrier specification. Next, it was tested, when the conservative void of the superscription was assumed, in order to confirm whether it does the security, as permeability necessaly for maintaining diffusion control, puts it for the swelling of actual bentonite. As the result, it was possible to confirm sufficient swelling performance in order to do the security of the diffusion control in Na-bentonite. However, the swelling performance greatly lowered by comparing Na-bentonite in Ca-bentonite with under 1/6. The increase of the permeability not do the security of the diffusion control, when it was based on void quantity ...

JAEA Reports

Measurements of Apparent Diffusion Coefficients (Da)for Ca(I), Ni(II)and Se(IV) in Bentonite with Silica Sand

Sato, Haruo

JNC TN8400 99-060, 12 Pages, 1999/10

JNC-TN8400-99-060.pdf:0.55MB

Apparent diffusion coefficients(Da) of Cs(Cs$$^{+}$$), Ni(Ni$$^{2+}$$) and Se(SeO$$_{3}$$$$^{2-}$$) in a Na-bentonite (Kunigel-V1) were measured for a dry density of 1.8 Mg$$cdot$$m$$^{-3}$$ with silica sand of 30 wt% at room temperature by in-diffusion method to evaluate the effect of the mixture of silica sand on Da in bentonite. The experiments for Cs and Ni were carried out under aerobic condition, but those for Se which is redox sensitive were carried out in an Ar glove-box (O$$_{2}$$ concentration $$<$$ 0.1 ppm). Consequently, no significant effect of silica sand mixture to the bentonite on Da values of Cs and Se was found, and the obtained Da values were approximately the same as those in the system without silica sand reported so far. On the other hand, Da values of Ni in bentonite with silica sand were 2 orders of magnitude lower than those in bentonite without silica sand obtained to date. The Da values of Ni reported so far were obtained using stable isotopic tracer and a tracer solution with fairly high Ni concentration compared with concentration used in this study was introduced. Additionally, it is known that distribution coefficient (Kd) of Ni on Na-montmorillonite which is the major constituent clay mineral of Kunigel-V1 decreases with increasing Ni concentration. Based on this, the abrupt decrease in Da values of Ni for bentonite with silica sand is considered to be due to the difference of sorption caused by the difference of Ni concentration in the porewater of bentonite.

JAEA Reports

A Study on nuclide migration in buffer materials and rocks for geological disposal of radioactive waste

Sato, Haruo

PNC TN8410 97-202, 205 Pages, 1998/01

PNC-TN8410-97-202.pdf:14.14MB

This thesis summarizes the results investigated in order to establish a basic theory on the predictive method of diffusion coefficients of nuclides in compacted sodium bentonite which is a candidate buffer material and in representative rocks for the geological disposal of radioactive waste by measuring the pore structural factors of the compacted bentonite and rocks such as porosity and tortuosity, measuring diffusion coefficients of nuclides in the bentonite and rocks, acquiring basic data on diffusion and developing diffusion models which can quantitatively predict nuclide migration in long-term. This consists of 7 chapters. Chapter 1 is the introduction, in which conventional studies on nuclide migration in buffer materials and rocks for the geological disposal of radioactive waste carried out to date are reviewed, and those problems are summarized as well as the objectives of this study are described. Besides, the difinition of geological disposal is explained. In Chapter 2, it is described on non-steady state diffusion of HTO, Sr-90, Tc-99, I-129, Cs-137, Np-237, Am-241 and Pu in purified sodium bentonite, Kunipia-F, in which the rate of constituent Na-smectite was raised approximately 100wt%. In-diffusion experiments were carried out in a range of bentonite densities of 200 $$sim$$ 2000 kg$$cdot$$m$$^{-3}$$ under ambient aerobic conditions at room temperature (20 $$sim$$ 23$$^{circ}$$C), and apparent diffusion coefficients (Da) were obtained. The apparent diffusion coefficients decreased with increasing dry density of bentonite. It was quantitatively indicated from diffusion experiments using HTO that these Da values include the effect of geometric retardation such as the tortuosity factor of compacted bentonite. It was experimentally clarified that Da is not affected by diffusion time based on diffusion experiments for different experimental periods using Sr and Cs. Moreover, it was also experimentally clarified that Da is not affected by tracer ...

6 (Records 1-6 displayed on this page)
  • 1